Worksheet for 2020-04-27

Conceptual Review

Question 1. When computing the flux of a vector field through a surface $\mathbf{r}(u, v)$, how might you decide whether to use $\mathbf{r}_{u} \times \mathbf{r}_{v}$ or $\mathbf{r}_{v} \times \mathbf{r}_{u}$? (How are these vectors related?)

Problems

Problem 1. Let S be the surface $z=x^{2}+4 y^{2}-4, z \leq 0$ oriented downwards (i.e. negatively). Compute $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathrm{d} \mathbf{S}$ where

$$
\mathbf{F}=\left(y \log _{2}\left(x^{2}+4 y^{2}+z^{2}\right)+3 x^{2} y^{2} \cos \left(x^{3}\right)\right) \mathbf{i}+\left(-3 x+2 y \sin \left(x^{3}\right)\right) \mathbf{j}+\left(e^{y z} \arctan \left(y^{x^{2}+1}\right)\right) \mathbf{k} .
$$

Problem 2. We will do this problem on Wednesday. Throughout this problem, let H denote the plane $z=2 x+4$.
(a) Let $\mathbf{F}=\langle 3 y z, x z, x y-y z\rangle$. Show that if C is any oriented simple closed curve contained in the plane H, then $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$, regardless of C.
(b) Let $\mathbf{G}=\left\langle x^{2} y-y, 0, y^{3} / 6\right\rangle$. If we let D to be any simple closed curve contained in the plane H which is oriented counterclockwise when viewed from above, find the maximum possible value of the integral $\int_{D} \mathbf{G} \cdot \mathrm{dr}$.
Problem 3. Use the divergence theorem to compute the volume enclosed by the surface obtained by rotating the curve $\langle\cos t, 0, \sin (2 t)\rangle(-\pi / 2 \leq t \leq \pi / 2)$ around the z-axis.
Problem 4. We will do this problem on Wednesday. On the previous worksheet, we did the following problems:
(a) Compute the flux of the vector field $\mathbf{F}=\langle x, y, z\rangle$ through the sphere $x^{2}+y^{2}+z^{2}=9$ oriented outwards.
(b) Compute the flux of the vector field $\left\langle 0,0,4-z^{2}\right\rangle$ outwards through the closed cylinder with lateral side $x^{2}+y^{2}=10$ and lids $z=0$ and $z=2$.
Now do these problems again using the divergence theorem, and check that you get the same answers!

